LENOVO IdeaPad 100-15IBY
15.6', Celeron 2.16ГГц, 2Гб, 250Гб
Цена 14'690 руб.
Palit GeForce GTX 1080
Jetstream 8G
Цена 47'210 руб.
ASUS RX 480
DUAL OC
Цена 19'590 руб.

Сервера размещены в

Мобильные устройства
Конференция
Персональные страницы
Wiki
Статистика разгона CPU (+4 за неделю, всего: 26904) RSS     



Объявления компаний (реклама) и анонсы
  • IPS монитор LG дешевле 7 т.р. в Ситилинке
  • 10 ядерный Broadwell-E 3 GHz - 129 160р
  • Мегамышь Asus Sparta за 14 990р
  • GTX 1070 - самая низкая цена в XPERT.RU, смотри!

Вы можете отметить интересные вам фрагменты текста,
которые будут доступны по уникальной ссылке в адресной строке браузера.

Справочник по разгону процессоров Intel Haswell

Genrix 17.09.2013 00:00 Страница: 1 из 2 | ссылка на материал | версия для печати | обсуждение | архив

Оглавление

Вступление

В этом материале будет дано общее руководство по разгону процессоров Intel Core с архитектурой Haswell для сокета LGA 1150.

Ранее в лаборатории уже были проведены различные тесты по разгону Haswell:

  • Исследуем разгонный потенциал Intel Core i7-4770K: тест десяти экземпляров процессора;
  • Раскрываем разгонный потенциал Haswell: замена термоинтерфейса под крышкой Intel Core i7-4770K;
  • Разгон трех экземпляров процессора Intel Core i7-4770K под жидким азотом;
  • Исследуем разгонный потенциал еще десяти экземпляров Intel Core i7-4770K: новый батч;
  • Изучение нюансов разгона процессоров Intel Haswell.

После прочтения вышеуказанных статей у начинающих или даже опытных оверклокеров могут возникнуть вопросы: «С чего лучше начать разгон Haswell серии К?» и «Какая последовательность действий необходима при разгоне Haswell серии К?» Ответы на эти и другие вопросы даются ниже в формате более простого изложения уже накопленного на данный момент опыта участников форума и результатов тестов лаборатории.

Немного теории

Прежде чем начать сам процесс разгона, необходимо освежить в памяти особенности новых решений Intel.

400x277  37 KB. Big one: 943x653  127 KB

Одним из основных нововведений архитектуры Haswell является интеграция под крышку процессора регулятора напряжения питания – iVR.

Что это меняет для пользователя? В первую очередь то, что теперь четырехфазные, относительно бюджетные материнские платы способны на серьезный уровень разгона ЦП, для достижения которого ранее необходимо было приобретать недешевые системные платы с шестью и более фазами подсистемы питания CPU. Такое стало возможно благодаря тому, что теперь на процессор материнской платой подается более высокий уровень напряжения питания – 1.8 В, вместо прежних 1 В. На картинке выше ввод напряжения обозначен как Vccin.

Напряжение Vccin 1.8 В подается на процессор в интегрированный регулятор питания iVR, где последним при помощи триста двадцати фаз оно преобразовывается в различные уровни напряжения для различных узлов внутри ЦП.

Еще со школы нам должно быть известно, что мощность равна произведению напряжения и силы тока. Сравним нагрузку на подсистему питания CPU у материнской платы при разных напряжениях для 77 Ватт Ivy Bridge и 84 Ватт Haswell:

  • 77 Вт / 1.2 В = 64.2 А.
  • 84 Вт / 1.8 В = 46.6 А.

Теперь возьмем данные по потреблению из статьи «Изучение нюансов» и посчитаем нагрузки для серьезного разгона Haswell при потреблении процессором 200 Ватт:

  • 200 Вт / 1.8 В = 111.11 А.

Именно высокий ток диктует необходимость большого количества фаз питания для успешного разгона. Забегая вперед, отмечу, что уровень Vccin можно поднимать до 2.4 В (что собственно и было реализовано в лаборатории), тем самым еще более разгружая подсистему питания (VRM):

  • 200 Вт / 2.4 В= 83.3 А.

Поскольку производители материнских плат сегодня обычно используют подсистему питания (VRM) с рабочим током около 40 А на фазу, нетрудно посчитать, что даже для такого разгона Haswell нужно уже как минимум три фазы питания. Достаточным количеством, с небольшим запасом, будет четыре фазы. Разумеется, не маркетинговых виртуальных фаз, а настоящих.

До интеграции iVR под крышку процессора, фазы на системной плате разделялись на различные узлы ЦП, например, такие как iGPU, ядра CPU, интегрированный контроллер памяти. Но теперь у Haswell нет фаз со специализацией, все фазы питания на материнской плате работают вместе над обеспечением мощности для iVR CPU. Оперативная память, как и ранее, работает на отдельной фазе питания, обычно находящейся рядом со слотами памяти.

Интеграция iVR под крышку ЦП избавила от Vdrop – падения напряжения питания ядер процессора под нагрузкой. Такое падение негативно отражается на стабильности CPU, вводя его в нестабильный диапазон напряжений. Для устранения этого эффекта материнской платой ранее использовалась схема компенсации падения напряжения – Load-Line Calibration. При разгоне уровень компенсации требовалось подбирать вручную. Теперь iVR берет контроль над напряжением в свои руки, облегчая жизнь пользователю.

Разгон на практике

Хорошему разгону необходимо хорошее охлаждение. Так, для достижения высот частотного потенциала BOX-версии кулеров однозначно не подойдут и следует обратить внимание на башенные конструкции на тепловых трубках в ценовой категории от ~$40. Многие из таких решений ранее уже были рассмотрены в лаборатории.

Кроме того, как показала практика предыдущих статей по разгону, больших частот на ЦП Haswell достичь сложно из-за штатного термоинтерфейса под крышкой CPU.

Перед разгоном можно попробовать оценить потенциал вашего процессора. Для этого необходимо сбросить настройки системной платы в заводское состояние. Сделать это можно перемычкой на материнской плате или из BIOS, загрузив настройки по умолчанию. При этом следует учесть, что некоторые производители оснащают свои модели плат физическими переключателями режимов экономии электроэнергии и предустановленных профилей разгона. Экономию и разгон нужно отключить. За подробностями следует обратиться к инструкции по плате.

После сброса настроек процессор будет функционировать на штатной частоте и iVR назначит ему базовое напряжение, которое можно увидеть как Vcore в BIOS и в разделе мониторинга напряжений.

432x367  54 KB. Big one: 620x527  81 KB

432x394  46 KB. Big one: 618x564  67 KB

Существует некоторая зависимость разгонного потенциала Haswell от базового напряжения. Точная статистика пока не собрана, в силу новизны платформы, но уже прослеживается следующая примерная тенденция, замеченная на скальпированных процессорах с «жидким металлом» под крышкой.

Базовое
напряжение
Оценка
процессора
Прогноз
разгона
0.900-0.999
Очень удачный
4800-5000 при 1.3 В
1.000-1.020
Хороший
4800 при 1.35 В
1.020-1.040
Средний
4600 при 1.4 В
1.040-1.060
Ниже среднего
4600 при 1.4 В
1.060-1.100
Плохой
4400 при 1.4 В
1.100 и выше
No comments
4200 при 1.4 В

Однако есть противоречивая практика у нескольких обладателей моделей Haswell на нашем форуме, когда ЦП с откровенно плохим прогнозом разгоняется не хуже процессора с хорошим прогнозом при близких напряжениях Vcore у обоих. Следовательно, нельзя полностью положиться на такую методику предсказания, но и игнорировать ее тоже не стоит.

Теперь, когда известно базовое напряжение, можно перейти непосредственно к процессу разгона.

Начнем с напряжений различных узлов процессора и их условно допустимых предельных уровней. Опытным путем энтузиастами за многие годы было выявлено, что более-менее безопасно превышать напряжения при разгоне можно на 20-30% от номинального уровня. Однако сам производитель никаких гарантий не дает, поскольку разгон не является штатным режимом функционирования. Тем не менее, Intel предлагает «застраховать» CPU за небольшую плату.

Допустимые уровни напряжений Haswell
Тип напряжения (возможные названия)
Максимум для воздушного и жидкостного охлаждения
Описание назначения
Влияние и цель изменения
Vccin
(iVR или VRIN)
2.4 В
Напряжение, подаваемое от VRM мат. платы на iVR CPUСледует удерживать его примерно равным Vcore+0.5. Помимо этого напряжения свыше 2 В могут стабилизировать CPU при сильном разгоне, даже с нарушением дельты 0.5
Vcore
1.45 В
Напряжение, подаваемое от iVR на ядра CPUСтабилизация процессора. Не следует превышать порог в 1.45 В. Для 24/7 желательно не переходить за 1.4 В. Высока вероятность выхода из строя ЦП при значениях свыше 1.45 В
Vring
(CPU Ring Cache или Uncore)
1.35 В
Напряжение кольцевой шины внутри процессора, от iVRДля разгона кольцевой шины и стабилизации разгона CPU
Vsa
(System Agent)
Offset
+0.200
Напряжение системного агента, от iVRСледует увеличивать при разгоне RAM. Можно немного увеличить для повышения общей стабильности системы. Начать следует с +0.025 В
Vioa
(CPU I/O Analog)
Offset
+0.200
Напряжение аналоговых вводов/выводов CPU, от iVRСледует увеличивать при разгоне RAM. Можно немного увеличить для повышения общей стабильности системы. Начать следует с +0.025 В
Viod
(CPU I/O Digital)
Offset
+0.200
Напряжение цифровых вводов/выводов CPU, от iVRСледует увеличивать при разгоне RAM. Можно немного увеличить для повышения общей стабильности системы. Начать следует с +0.025 В
Vddq
(DRAM Voltage)
1.75 В
Напряжение оперативной памяти, от мат. платыСледует увеличивать при разгоне RAM. При использовании XMP профиля увеличивать не требуется
PCH
(PCH Core Voltage)
1.15 В
Напряжение для PCHОбычно увеличивать не требуется, кроме случаев разгона по шине

В Haswell существует несколько типов управления напряжением питания ядер процессора. Каждый производитель может проявлять тут бурную фантазию в названиях режимов, но интуитивно вы сможете догадаться, какой режим и под каким названием скрывается.

Для примера, приведу ниже скриншот из BIOS материнской платы ASUS.

384x144  16 KB. Big one: 792x296  57 KB

Auto (Adaptive) – адаптивный автоматический режим. В этом случае напряжением управляет iVR процессора во всем диапазоне частот. Положительным моментом является то, что напряжение регулируется автоматически. Отрицательный момент – iVR зачастую неадекватно поднимает напряжение, выше достаточного уровня, чем может вызвать перегрев CPU и активацию его защиты в виде снижения частоты – троттлинг.

Offset – сдвиг кривой зависимости напряжения и частоты. Для понимания принципа его работы стоит посмотреть на следующую таблицу.

Частота, МГц
Напряжение, В
Offset +0,200 В
800
0.6
0.8
1200
0.7
0.9
2000
0.8
1
2500
0.9
1.1
3400
1
1.2
3900
1.1
1.3
4400
1.2
1.4
4600
1.3
1.5

Добавляя сдвиг напряжения, мы сдвигаем на графике уровни напряжений на всех уровнях частот ядер, получая большее напряжение на прежней частоте.

Положительным моментом является то, что вы частично сами управляете напряжением, задавая сдвиг. Отрицательным моментом – сложность подбора такого режима, а именно его достаточности и баланса нагрева. Подбор размера сдвига осуществляется методом проб и ошибок.

384x154  21 KB. Big one: 792x318  75 KB

Смешанный режим (интерполяция, адаптивный offset). Это режим двойного сдвига. На всем диапазоне штатных частот применяется обычный offset, а сверх них, уже на турбочастотах, применяется еще больший сдвиг. Выглядит это так:

Частота ядер, МГц
Напряжение, В
Offset +0.200 В
Дополнительный
Offset +0.200 В
800
0.6
0.8
1200
0.7
0.9
2000
0.8
1
2500
0.9
1.1
3400
1
1.2
1.2
3900
1.1
1.3
1.5
4400
1.2
1.4
1.6
4600
1.3
1.5
1.7

Плюсы и минусы те же самые, что и у обычного Offset.

Однако у дополнительного сдвига есть одна полезная особенность – он может быть отрицательным. Для чего это может пригодиться? Например, можно задать первичный offset, который поднимет напряжения во всем диапазоне частот, а дополнительный отрицательный сдвиг поможет снизить верхний предел напряжения на турбочастотах. Этим можно заметно снизить нагрев процессора под большой нагрузкой, если iVR в вашем случае чрезмерно поднимает напряжение.

Частота ядер, МГц
Напряжение, В
Offset +0.300 В
Дополнительный
Offset -0.100 В
800
0.6
0.9
1200
0.7
1
2000
0.8
1.1
2500
0.9
1.2
3400
1
1.3
1.3
3900
1.1
1.4
1.3
4400
1.2
1.5
1.4
4600
1.3
1.6
1.5

Подобрать настройку напряжения с дополнительным offset еще сложнее, не говоря уже про настройки с его отрицательными значениями. Поберегите нервы.

Перейдем к следующему способу управления напряжением.

384x103  15 KB. Big one: 795x213  51 KB

Последний режим это Manual, ручной. В нем у напряжения есть заданный потолок, который увеличивается под нагрузкой лишь на 0.010 В – 0.015 В. Небольшое увеличение напряжения – работа автоматической логики iVR. Плюсы такого решения – легче подобрать нужное напряжение и стабильность во всем диапазоне частот. Минусы – да, в общем-то, их и нет.

Лучше начинать разгон, выбирая ручной способ управления напряжением. Это облегчит и ускорит сам процесс.

Что касается других подсистем процессора, то аналогичные способы управления существуют для Vring, Vsa, Viod, Vioa узлов ЦП. Некоторые из них лишены ручного режима или дополнительного offset.

Оцените материал →

Объявления компаний (реклама) и анонсы
  • Планшет 10` Panasonic за 271 900р - смотри характиристики
  • 3.8Tb SSD Samsung PM863 - смотри цену!
  • Супермать MSI Godlike Carbon за 39 т.р.




Обсуждение ВКонтакте (скрыть)